Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Viruses ; 16(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543795

RESUMO

Genomic sequencing of clinical samples to identify emerging variants of SARS-CoV-2 has been a key public health tool for curbing the spread of the virus. As a result, an unprecedented number of SARS-CoV-2 genomes were sequenced during the COVID-19 pandemic, which allowed for rapid identification of genetic variants, enabling the timely design and testing of therapies and deployment of new vaccine formulations to combat the new variants. However, despite the technological advances of deep sequencing, the analysis of the raw sequence data generated globally is neither standardized nor consistent, leading to vastly disparate sequences that may impact identification of variants. Here, we show that for both Illumina and Oxford Nanopore sequencing platforms, downstream bioinformatic protocols used by industry, government, and academic groups resulted in different virus sequences from same sample. These bioinformatic workflows produced consensus genomes with differences in single nucleotide polymorphisms, inclusion and exclusion of insertions, and/or deletions, despite using the same raw sequence as input datasets. Here, we compared and characterized such discrepancies and propose a specific suite of parameters and protocols that should be adopted across the field. Consistent results from bioinformatic workflows are fundamental to SARS-CoV-2 and future pathogen surveillance efforts, including pandemic preparation, to allow for a data-driven and timely public health response.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Fluxo de Trabalho , Biologia Computacional
2.
NPJ Vaccines ; 8(1): 175, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37945621

RESUMO

HIV affects more than 38 million people worldwide. Although HIV can be effectively treated by lifelong combination antiretroviral therapy, only a handful of patients have been cured. Therapeutic vaccines that induce robust de novo immune responses targeting HIV proteins and latent reservoirs will likely be integral for functional HIV cure. Our study shows that immunization of naïve rhesus macaques with arenavirus-derived vaccine vectors encoding simian immunodeficiency virus (SIVSME543 Gag, Env, and Pol) immunogens is safe, immunogenic, and efficacious. Immunization induced robust SIV-specific CD8+ and CD4+ T-cell responses with expanded cellular breadth, polyfunctionality, and Env-binding antibodies with antibody-dependent cellular cytotoxicity. Vaccinated animals had significant reductions in median SIV viral load (1.45-log10 copies/mL) after SIVMAC251 challenge compared with placebo. Peak viral control correlated with the breadth of Gag-specific T cells and tier 1 neutralizing antibodies. These results support clinical investigation of arenavirus-based vectors as a central component of therapeutic vaccination for HIV cure.

3.
JHEP Rep ; 5(11): 100893, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37929228

RESUMO

Background & Aims: Bulevirtide (BLV) is a small lipopeptide agent that specifically binds to the sodium taurocholate cotransporting polypeptide (NTCP) bile salt transporter and HBV/HDV receptor on the surface of human hepatocytes and inhibits HDV and HBV entry. As a satellite virus of HBV, HDV virions are formed after assembly of HDV RNA with the HBV envelope proteins (HBsAg). Because both viruses exist as eight different genotypes, this creates a potential for high diversity in the HBV/HDV combinations. To investigate the sensitivity of various combinations of HBV/HDV genotypes to BLV, clinical and laboratory strains were assessed. Methods: For the laboratory strains, the different envelopes from HBV genotypes A through H were combined with HDV genotypes 1-8 in cotransfection assays. Clinical plasma isolates were obtained from clinical studies and academic collaborations to maximise the diversity of HBV/HDV genotypes tested. Results: The mean BLV EC50 against HDV laboratory strains ranged from 0.44 to 0.64 nM. Regardless of HBV and HDV genotypes, the clinical isolates showed similar sensitivities to BLV with mean values that ranged from 0.2 to 0.73 nM. Conclusions: These data support the use of BLV in patients infected with any HBV/HDV genotypes. Impact and implications: This study describes the potent activity of BLV against multiple laboratory strains spanning all HBV/HDV A-H/1-8 genotype combinations and the most diverse collection of HDV clinical samples tested to date, including HBV/HDV genotype combinations less frequently observed in the clinic. Overall, all isolates and laboratory strains displayed similar in vitro nanomolar sensitivity to BLV. This broad-spectrum antiviral activity of BLV has direct implications on potential simplified treatment for any patient infected with HDV, regardless of genotype, and supports the new 2023 EASL Clinical Practice Guidelines on HDV that recommend antiviral treatment for all patients with CHD.

4.
J Hepatol ; 79(3): 657-665, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37120031

RESUMO

BACKGROUND & AIMS: Bulevirtide (BLV) is a HDV/HBV entry inhibitor that is associated with virologic response (responders, HDV-RNA undetectable or ≥2 log10 IU/ml decrease from baseline) in >50% of patients after a 24-week treatment. However, some patients only achieve a <1 log10 IU/ml decline in HDV-RNA after the 24-week treatment (non-responders). Here, we report a viral resistance analysis in participants receiving BLV monotherapy who were non-responders or experienced virologic breakthrough (VB, i.e., two consecutive increases in HDV-RNA of ≥1 log10 IU/ml from nadir or two consecutive HDV-RNA detectable results if previously undetectable) from the phase II MYR202 and phase III MYR301 study. METHODS: Deep-sequencing of the BLV-corresponding region in HBV PreS1 and of the HDV HDAg gene, as well as in vitro phenotypic testing, were performed for the participant with VB (n = 1) and non-responders (n = 20) at baseline (BL) and Week 24 (WK24). RESULTS: No amino acid exchanges associated with reduced susceptibility to BLV within the BLV-corresponding region or within HDAg were identified in isolates from any of the 21 participants at BL or at WK24. Although variants (HBV n = 1; HDV n = 13) were detected at BL in some non-responders or in the participant with VB, none were associated with reduced sensitivity to BLV in vitro. Furthermore, the same variant was detected in virologic responders. A comprehensive phenotypic analysis demonstrated that the BLV EC50 values from 116 BL samples were similar across non-responders, partial responders (HDV RNA decline ≥1 but <2 log10 IU/ml), and responders regardless of the presence of HBV and/or HDV polymorphisms. CONCLUSIONS: No amino acid substitutions associated with reduced sensitivity to BLV monotherapy were detected at BL or WK24 in non-responders or the participant with VB after 24-week BLV treatment. IMPACT AND IMPLICATIONS: This is the first study investigating the development of resistance in patients treated with BLV. Excluding resistance to BLV as an explanation for an insufficient decrease in HDV-RNA levels during BLV therapy is an important finding for patients, clinicians, and researchers. It demonstrates that BLV has a high barrier to resistance, indicating it is safe and suitable for long-term treatment, although long-term surveillance for resistance should be performed. Our results hint at other still unknown mechanisms as an explanation for the persistence of serum HDV-RNA during inhibition of viral entry. CLINICAL TRIAL NUMBERS: NCT03546621 and NCT03852719.


Assuntos
Antivirais , Vírus Delta da Hepatite , Humanos , Antivirais/efeitos adversos , Antígenos da Hepatite delta , Vírus Delta da Hepatite/genética , Hepatite Crônica/tratamento farmacológico , RNA
5.
J Viral Hepat ; 30(1): 29-38, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208116

RESUMO

Antiviral nucleos(t)ide analogue therapies inhibit HBV replication and suppress the HBV DNA levels in patients with chronic HBV infection. Since HBV RNAs are expressed from cccDNA or HBV integrated sequences, independently of viral genome replication, levels of HBV RNAs in plasma may remain high following treatment with nucleos(t)ide analogue. Thus, HBV RNAs have been proposed to be used as a viral biomarker for treatment outcome and disease progression. Recent investigations of plasma HBV RNAs described the presence of full length as well as subgenomic forms of RNA. To support the usage of plasma HBV RNAs as a viral biomarker, further understanding of HBV RNA composition in clinical samples is needed. Here, sequence of extracellular HBV RNAs was characterized in plasma samples of patients with chronic HBV infection using two independent RNA amplification methods that do not use HBV-specific primers for amplification: total RNA (NuGEN RNAseq) and mRNA (TruSeq RNAseq). Sequencing coverage was obtained across the full length of HBV genome for both methods, confirming the presence of full-length HBV RNA in plasma. The sequence of HBV RNA was nearly identical to plasma HBV DNA sequence in each sample with only 0-14 (median 4) mismatches over 3 kb. Thus, sequence of HBV RNA plasma reflects the intrahepatic viral reservoir and can be used for monitoring of sequence variants such as resistance in clinical trials. Additionally, RNA splice forms, different polyA tails start positions and presence of HBV-human chimeric transcript were identified.


Assuntos
Antivirais , Vírus da Hepatite B , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Biomarcadores , DNA Viral , Vírus da Hepatite B/genética , RNA Viral , Replicação Viral , RNA Subgenômico
6.
Aliment Pharmacol Ther ; 57(5): 509-523, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36427857

RESUMO

BACKGROUNDS AND AIMS: We investigated associations between hepatitis B virus (HBV) genome-length haplotype number (HN) at baseline in subjects with HBeAg-positive chronic hepatitis B (CHB), and the likelihood of achieving functional cure during direct-acting antiviral therapy METHOD: We analysed 86 HBeAg-positive baseline samples from patients with HBV genotypes A and D who were enrolled in a Phase II trial of tenofovir disoproxil fumarate (TDF) to determine if HN was a biomarker of HBsAg loss during therapy. Findings were validated using baseline samples from 181 patients with HBV genotypes A and D from an independent clinical trial utilising TDF or tenofovir alafenamide therapy in HBeAg-positive CHB. RESULTS: In the HBeAg-positive test cohort, patients with genotypes A or D and ≤2 haplotypes had a minimum of 21-fold higher likelihood of achieving HBsAg loss on TDF. Baseline HN (p < 0.0001) was a stronger predictor of HBsAg loss on therapy than HBsAg titre (p = 0.03), HBeAg titre (p = 0.0002), or the presence of HBV basal core promoter (A1762T, p = 0.0379 and G1764A, p = 0.0176) or G1896A precore mutations (p = 0.0218). This finding was validated in the independent validation cohort. HN was statistically higher in patients with HBV genotypes B or C infection compared to genotypes A and D. CONCLUSION: Baseline HN ≤2 predicts which patients with HBV genotypes A or D will more likely progress to functional cure on current direct-acting antiviral therapy, with greater accuracy than current biomarkers including baseline HBsAg and HBeAg titre.


Assuntos
Hepatite B Crônica , Hepatite C Crônica , Humanos , Vírus da Hepatite B/genética , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/genética , Antígenos E da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Antivirais/uso terapêutico , Haplótipos , Hepatite C Crônica/tratamento farmacológico , Tenofovir/uso terapêutico , Genótipo , DNA Viral/genética , DNA Viral/análise
7.
bioRxiv ; 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380755

RESUMO

During the COVID-19 pandemic, SARS-CoV-2 surveillance efforts integrated genome sequencing of clinical samples to identify emergent viral variants and to support rapid experimental examination of genome-informed vaccine and therapeutic designs. Given the broad range of methods applied to generate new viral genomes, it is critical that consensus and variant calling tools yield consistent results across disparate pipelines. Here we examine the impact of sequencing technologies (Illumina and Oxford Nanopore) and 7 different downstream bioinformatic protocols on SARS-CoV-2 variant calling as part of the NIH Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) Tracking Resistance and Coronavirus Evolution (TRACE) initiative, a public-private partnership established to address the COVID-19 outbreak. Our results indicate that bioinformatic workflows can yield consensus genomes with different single nucleotide polymorphisms, insertions, and/or deletions even when using the same raw sequence input datasets. We introduce the use of a specific suite of parameters and protocols that greatly improves the agreement among pipelines developed by diverse organizations. Such consistency among bioinformatic pipelines is fundamental to SARS-CoV-2 and future pathogen surveillance efforts. The application of analysis standards is necessary to more accurately document phylogenomic trends and support data-driven public health responses.

8.
J Virol ; 96(18): e0084922, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36037476

RESUMO

The existing cell culture-based methods to study hepatitis B virus (HBV) have limitations and do not allow for viral long-term passage. The aim of this study was to develop a robust in vitro long-term viral passage system with optimized cell culture conditions and a viral isolate with the ability to spread and passage. An HBV genotype A clinical isolate was subjected to multiple rounds of UV treatment and passaged in an optimized primary human hepatocyte (PHH)/human fibroblast coculture system. The passaged UV-treated virus was sequenced and further characterized. In addition, a panel of mutant viruses containing different combinations of mutations observed in this virus was investigated. The clinical isolate was passaged for 20 rounds with 21 days per round in an optimized PHH/human fibroblast coculture system while subject to UV mutagenesis. This passaged UV-mutated isolate harbored four mutations: G225A (sR24K) in the S gene, A2062T in the core gene, and two mutations G1764A and C1766T (xV131I) in the basal core promoter (BCP) region. In vitro characterization of the four mutations suggested that the two BCP mutations G1764A and C1766T contributed to the increased viral replication and viral infectivity. A robust in vitro long-term HBV viral passage system has been established by passaging a UV-treated clinical isolate in an optimized PHH/fibroblast coculture system. The two BCP mutations played a key role in the virus's ability to passage. This passage system can be used for studying the entire life cycle of HBV and has the potential for in vitro drug-resistance selection upon further optimization. IMPORTANCE The existing cell culture-based methods to study HBV have limitations and do not allow for viral long-term passage. In this study, an HBV genotype A clinical isolate was subjected to multiple rounds of UV treatment and passaged in an optimized PHH/human fibroblast coculture system. This passaged UV-mutated isolate carried four mutations across the HBV genome, and in vitro characterization of the four mutations suggested that the two basal core promoter (BCP) mutations G1764A and C1766T played a key role in the virus's ability to passage. In summary, we have developed a robust in vitro long-term HBV viral passage system by passaging an UV-treated HBV genotype A clinical isolate in an optimized PHH/human fibroblast coculture system. This passage system can be used for studying the entire life cycle of HBV and has the potential for in vitro drug-resistance selection upon further optimization.


Assuntos
Técnicas de Cocultura , Vírus da Hepatite B , Hepatite B , Virologia , DNA Viral/genética , Fibroblastos/virologia , Genótipo , Hepatite B/virologia , Vírus da Hepatite B/genética , Hepatócitos/virologia , Humanos , Mutagênese , Mutação , Virologia/métodos , Replicação Viral
9.
Antimicrob Agents Chemother ; 66(6): e0022222, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35532238

RESUMO

Genetic variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence and rapid spread of multiple variants throughout the pandemic, of which Omicron is currently the predominant variant circulating worldwide. SARS-CoV-2 variants of concern/variants of interest (VOC/VOI) have evidence of increased viral transmission, disease severity, or decreased effectiveness of vaccines and neutralizing antibodies. Remdesivir (RDV [VEKLURY]) is a nucleoside analog prodrug and the first FDA-approved antiviral treatment of COVID-19. Here, we present a comprehensive antiviral activity assessment of RDV and its parent nucleoside, GS-441524, against 10 current and former SARS-CoV-2 VOC/VOI clinical isolates by nucleoprotein enzyme-linked immunosorbent assay (ELISA) and plaque reduction assay. Delta and Omicron variants remained susceptible to RDV and GS-441524, with 50% effective concentration (EC50) values 0.30- to 0.62-fold of those observed against the ancestral WA1 isolate. All other tested variants exhibited EC50 values ranging from 0.13- to 2.3-fold of the observed EC50 values against WA1. Analysis of nearly 6 million publicly available variant isolate sequences confirmed that Nsp12, the RNA-dependent RNA polymerase (RdRp) target of RDV and GS-441524, is highly conserved across variants, with only 2 prevalent changes (P323L and G671S). Using recombinant viruses, both RDV and GS-441524 retained potency against all viruses containing frequent variant substitutions or their combination. Taken together, these results highlight the conserved nature of SARS-CoV-2 Nsp12 and provide evidence of sustained SARS-CoV-2 antiviral activity of RDV and GS-441524 across the tested variants. The observed pan-variant activity of RDV supports its continued use for the treatment of COVID-19 regardless of the SARS-CoV-2 variant.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Humanos , SARS-CoV-2/genética
10.
AIDS ; 36(11): 1511-1520, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35466963

RESUMO

OBJECTIVE: We investigated the prevalence of preexisting M184V/I and associated risk factors among clinical trial participants with suppressed HIV and evaluated the impact of M184V/I on virologic response after switching to bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF). DESIGN: Participant data were pooled from six clinical trials investigating the safety and efficacy of switching to B/F/TAF in virologically suppressed people with HIV. METHODS: Preexisting drug resistance was assessed by historical genotypes and/or baseline proviral DNA genotyping. Virologic outcomes were determined by last available on-treatment HIV-1 RNA. Stepwise selection identified potential risk factors for M184V/I in a multivariate logistic regression model. RESULTS: Altogether, 2034 participants switched treatment regimens to B/F/TAF and had follow-up HIV-1 RNA data, and 1825 of these participants had baseline genotypic data available. Preexisting M184V/I was identified in 182 (10%), mostly by baseline proviral DNA genotype ( n  = 167). Most substitutions were M184V ( n  = 161) or M184V/I mixtures ( n  = 10). Other resistance substitutions were often detected in addition to M184V/I ( n  = 147). At last on-treatment visit, 98% (179/182) with preexisting M184V/I and 99% (2012/2034) of all B/F/TAF-treated participants had HIV-1 RNA less than 50 copies/ml, with no treatment-emergent resistance to B/F/TAF. Among adult participants, factors associated with preexisting M184V/I included other resistance, black race, Hispanic/Latinx ethnicity, lower baseline CD4 + cell count, advanced HIV disease, longer duration of antiretroviral therapy, and greater number of prior third agents. CONCLUSION: M184V/I was detected in 10% of virologically suppressed clinical trial participants at study baseline. Switching to B/F/TAF demonstrated durable efficacy in maintaining viral suppression, including in those with preexisting M184V/I.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Adenina , Adulto , Alanina , Amidas , Fármacos Anti-HIV/uso terapêutico , Ensaios Clínicos como Assunto , Combinação de Medicamentos , Emtricitabina , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Compostos Heterocíclicos com 3 Anéis , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Piperazinas , Piridonas , RNA/uso terapêutico , Tenofovir/análogos & derivados
11.
JHEP Rep ; 4(4): 100449, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35295767

RESUMO

Background & Aims: HBV infects over 257 million people worldwide and is associated with the development of hepatocellular carcinoma (HCC). Integration of HBV DNA into the host genome is likely a key driver of HCC oncogenesis. Here, we utilise targeted long-read sequencing to determine the structure of HBV DNA integrations as well as full isoform information of HBV mRNA with more accurate quantification than traditional next generation sequencing platforms. Methods: DNA and RNA were isolated from fresh frozen liver biopsies collected within the GS-US-174-0149 clinical trial. A pan-genotypic panel of biotinylated oligos was developed to enrich for HBV sequences from sheared genomic DNA (∼7 kb) and full-length cDNA libraries from poly-adenylated RNA. Samples were sequenced on the PacBio long-read platform and analysed using a custom bioinformatic pipeline. Results: HBV-targeted long-read DNA sequencing generated high coverage data spanning entire integrations. Strikingly, in 13 of 42 samples (31%) we were able to detect HBV sequences flanked by 2 different chromosomes, indicating a chromosomal translocation associated with HBV integration. Chromosomal translocations were unique to each biopsy sample, suggesting that each originated randomly, and in some cases had evidence of clonal expansion. Using targeted long-read RNA sequencing, we determined that upwards of 95% of all HBV transcripts in patients who are HBeAg-positive originate from cccDNA. In contrast, patients who are HBeAg-negative expressed mostly HBsAg from integrations. Conclusions: Targeted lso-Seq allowed for accurate quantitation of the HBV transcriptome and assignment of transcripts to either cccDNA or integration origins. The existence of multiple unique HBV-associated inter-chromosomal translocations in non-HCC CHB patient liver biopsies suggests a novel mechanism with mutagenic potential that may contribute to progression to HCC. Lay summary: Fresh frozen liver biopsies from patients infected with HBV were subjected to targeted long-read RNA and DNA sequencing. Long-read RNA sequencing captures entire HBV transcripts in a single read, allowing for resolution of overlapping transcripts from the HBV genome. This resolution allowed us to quantify the burden of transcription from integrations vs. cccDNA origin in individual patients. Patients who were HBeAg-positive had a significantly larger fraction of the HBV transcriptome originating from cccDNA compared with those who were HBeAg-negative. Long-read DNA sequencing captured entire integrated HBV sequences including multiple kilobases of flanking host sequence within single reads. This resolution allowed us to describe integration events flanked by 2 different host chromosomes, indicating that integrated HBV DNA are associated with inter-chromosomal translocations. This may lead to significant transcriptional dysregulation and drive progression to HCC.

12.
J Antimicrob Chemother ; 77(4): 989-995, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35028668

RESUMO

BACKGROUND: Lenacapavir in vitro resistance selections identified seven mutations in HIV-1 capsid protein (CA) associated with reduced susceptibility. OBJECTIVES: To analyse lenacapavir activity against lenacapavir-associated resistance mutations in multiple assays. We also report Day 10 resistance analyses conducted in a Phase 1b study of lenacapavir (Study 4072) in people with HIV (PWH). METHODS: Mutations were inserted in a proviral DNA clone by site-directed mutagenesis, and viruses (n = 12) were generated by transfection. Sequences were used to generate single-cycle (SC) test vectors that were evaluated in a Gag-Pro assay, and replicative viruses were tested in a multicycle (MC) MT-2 assay to determine lenacapavir susceptibility. Study 4072 was a Phase 1b, double-blinded, placebo-controlled, dose-ranging, randomized study of lenacapavir in untreated PWH. Participants received a single dose of lenacapavir (up to 750 mg) or placebo (10 day monotherapy). CA resistance was characterized using genotypic and/or phenotypic assays. RESULTS: Lenacapavir susceptibility in the SC assay showed an inverse relationship between replication capacity and resistance. In Study 4072, all 29 participants receiving lenacapavir showed a robust virological response with no rebound. At baseline, no participant had resistance mutations to lenacapavir, and all had WT susceptibility to lenacapavir. Post-monotherapy analyses revealed the emergence of CA mutation Q67H at Day 10 in two participants. CONCLUSIONS: In vitro assays confirmed that increased resistance to lenacapavir was associated with decreased replication capacity of mutant viruses. In the clinical study no pre-existing lenacapavir resistance was detected. Emergence of Q67H occurred at exposures below the dose used in current Phase 2/3 studies. These results support development of lenacapavir as an antiretroviral agent.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Antirretrovirais/uso terapêutico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Mutação
13.
J Acquir Immune Defic Syndr ; 89(4): 433-440, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897227

RESUMO

BACKGROUND: Preexisting drug resistance limits the utility of HIV antiretroviral therapy. Studies have demonstrated safety and efficacy of bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF), including in patients with M184V/I substitutions. SETTING: We investigated virologic outcomes through 48 weeks of B/F/TAF treatment in individuals with preexisting primary integrase strand transfer inhibitor resistance (INSTI-R). METHODS: Preexisting INSTI-R was retrospectively evaluated from 7 B/F/TAF studies. INSTI-R was assessed by historical genotypes and/or baseline RNA or DNA sequencing. Viral loads were measured at all visits. RESULTS: Preexisting primary INSTI-R substitutions were detected in 20 of the 1907 participants (1.0%). The 20 participants were predominantly male (75%), were Black (65%), had HIV-1 subtype B (85%), and had baseline median CD4 counts of 594 cells/mm3 and median age of 52 years. Most of the participants (n = 19) were virologically suppressed at baseline and had one primary INSTI-R substitution, E92G, Y143C/H, S147G, Q148H/K/R, N155S, or R263K, +/-secondary substitutions. All suppressed participants maintained virologic suppression throughout 48 weeks without any viral blips. One treatment-naive participant had virus with Q148H+G140S that was fully sensitive to bictegravir but only partially to dolutegravir (phenotype <2.5-fold change and >4-fold change, respectively). With a baseline viral load of 30,000 copies/mL, this participant was virologically suppressed by week 4 and maintained <50 copies/mL through week 48. CONCLUSIONS: This small cohort with primary INSTI-R achieved and/or maintained virologic suppression through 48 weeks of B/F/TAF treatment. Consistent with the potent in vitro activity of bictegravir against most INSTI-R patterns, B/F/TAF may be a potential treatment option for patients with select preexisting INSTI-R, if confirmed by further studies.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Inibidores de Integrase de HIV , Alanina , Amidas , Fármacos Anti-HIV/uso terapêutico , Emtricitabina/uso terapêutico , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Piperazinas , Piridonas/uso terapêutico , Estudos Retrospectivos , Tenofovir/análogos & derivados
14.
AIDS ; 36(2): 205-214, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586088

RESUMO

OBJECTIVE: Persistence of the viral reservoir is the main barrier to curing HIV. Initiation of ART during acute HIV infection can limit the size and diversity of the reservoir. In depth characterization of the reservoir in individuals who initiate ART during acute infection will be critical for clinical trial design and cure strategies. METHODS: Four cohorts with participants who initiated ART during acute infection or during chronic infection were enrolled in a cross-sectional, noninterventional study. Viral reservoir was evaluated by the Intact Proviral DNA Assay (IPDA), the Total HIV DNA Assay (THDA) and the Quantitative Viral Outgrowth Assay (QVOA). Viral diversity and susceptibility to V3-glycan bNAbs were determined by genotyping of the viral envelope gene. RESULTS: Participants who initiated ART during the acute Fiebig I-IV stages had lower level of total HIV DNA than participants who initiated ART during chronic infection whereas no difference was observed in intact HIV DNA or outgrowth virus. Participants who initiated ART during Fiebig I-IV also had lower viral diversity and appeared to have higher susceptibility to bNAbs than participants initiating ART during chronic infection. CONCLUSION: Individuals initiating ART during Fiebig I-IV had small viral reservoirs, low viral diversity, and high susceptibility to bNAbs, and would be an optimal target population for proof-of-concept HIV cure trials.


Assuntos
Infecções por HIV , HIV-1 , Antirretrovirais/uso terapêutico , Anticorpos Amplamente Neutralizantes , Estudos Transversais , HIV-1/genética , Humanos , Carga Viral
16.
J Acquir Immune Defic Syndr ; 88(1): 61-69, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397744

RESUMO

BACKGROUND: HIV envelope (env) diversity represents a significant challenge for the use of broadly neutralizing antibodies (bNAbs) in HIV treatment and cure studies. Screening for viral sensitivity to bNAbs to select eligible trial participants will be important to improve clinical efficacy; however, no universal approach has been established. METHODS: Pre-antiretroviral therapy plasma virus from participants in the Zurich Primary HIV Infection (ZPHI) study was genotyped and phenotyped for sensitivity to the bNAbs elipovimab (EVM, formerly GS-9722) and 3BNC117. The genotyping and phenotyping assessments were performed following the Clinical Laboratory Improvement Amendments of 1988 guidelines as required for entry into clinical trials. The genotypic-based prediction of bNAb sensitivity was based on HIV env amino acid signatures identified from a genotypic-phenotypic correlation algorithm using a subtype B database. RESULTS: Genotyping the plasma virus and applying env sensitivity signatures, ZPHI study participants with viral sensitivity to EVM and 3BNC117 were identified. ZPHI study participants with virus sensitive to EVM and 3BNC117 were also identified by phenotyping the plasma virus. Comparison of the genotypic and phenotypic sensitivity assessments showed strong agreement between the 2 methodologies. CONCLUSIONS: The genotypic assessment was found to be as predictive as the direct measurement of bNAb sensitivity by phenotyping and may, therefore, be preferred because of more rapid turnaround time and assay simplicity. A significant number of the participants were predicted to have virus sensitive to EVM and 3BNC117 and could, thus, be potential participants for clinical trials involving these bNAbs.


Assuntos
Terapia Antirretroviral de Alta Atividade , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Farmacorresistência Viral , Genótipo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Humanos , Fenótipo
17.
J Antimicrob Chemother ; 76(8): 2153-2157, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33880558

RESUMO

OBJECTIVES: Two Phase 3, randomized, double-blind, active-controlled studies of initial HIV-1 treatment demonstrated that bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF) was non-inferior to dolutegravir/abacavir/lamivudine (DTG/ABC/3TC; Study 1489) or to DTG+F/TAF (Study 1490) through 144 weeks. In both studies, there was no emergent resistance to study drugs. Here, the 3 year resistance analysis and impact of baseline resistance substitutions on treatment response are described. METHODS: Population sequencing of HIV-1 protease and reverse transcriptase (RT) was performed at screening. Retrospective baseline next generation sequencing of protease, RT and integrase (IN) was analysed at a ≥ 15% cutoff. Resistance analyses were performed on participants with confirmed viral rebound of HIV-1 RNA ≥200 copies/mL through Week 144 or last visit who did not resuppress to <50 copies/mL while on study drug. RESULTS: Transmitted primary drug resistance substitutions were present in the following proportions of participants: integrase strand transfer inhibitor (INSTI) resistance (-R) in 1.3% (17/1270) of participants; NRTI-R in 2.7% (35/1274); NNRTI-R in 14.1% (179/1274); and PI-R in 3.5% (44/1274). These pre-existing resistance substitutions not associated with study drug did not affect treatment outcomes. One participant in the B/F/TAF group had pre-existing bictegravir and dolutegravir resistance substitutions (Q148H+G140S in integrase) at baseline and suppressed and maintained HIV-1 RNA <50 copies/mL through Week 144. In total, 21 participants qualified for resistance testing [1.3% (8/634) B/F/TAF; 1.9% (6/315) DTG/ABC/3TC; 2.2% (7/325) DTG+F/TAF]; none had emergent resistance to study drugs. CONCLUSIONS: Treatment with B/F/TAF, DTG/ABC/3TC, or DTG+F/TAF achieved high, durable rates of virological suppression in HIV-1 treatment-naive participants. The presence of pre-existing resistance substitutions did not affect treatment outcomes, and there was no treatment-emergent resistance.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Alanina , Amidas , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Combinação de Medicamentos , Resistência a Medicamentos , Emtricitabina/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Piperazinas , Piridonas , Estudos Retrospectivos , Tenofovir/análogos & derivados
18.
J Virol Methods ; 292: 114117, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33657432

RESUMO

Hepatitis B virus (HBV) capsids are assembled from HBV core protein and assembly is a critical step in the propagation of the virus. Due to its multiple functions in the viral life cycle, core is an attractive target for new antiviral therapies. For HBV capsid assembly modulators (CAMs), several resistance mutants have been identified, both from the clinic and in vitro. However, currently there is no convenient in vitro assay to monitor resistance to CAMs in the clinic. Here, we developed a facile, cassette-based phenotyping assay to assess the antiviral activity of CAMs on a panel of clinical isolates. Using this system, the core genes from 13 patients infected with HBV genotypes A-H were expressed as chimeric virus and tested for sensitivity to CAMs. No substantial differences in antiviral activity were observed across genotypes due to the conservation of the drug binding pocket. In addition, we tested a panel of constructs encoding 13 single amino acid polymorphs in the CAM binding site, including some polymorphs with previously-described resistance to CAMs. Overall, 11 of 13 constructs replicated in vitro, 6 constructs showed reduced susceptibility to CAMs. The 11 polymorphs which could replicate in vitro remained sensitive to the nucleotide analog tenofovir alafenamide (TAF), indicating that there is no cross-resistance.


Assuntos
Capsídeo , Vírus da Hepatite B , Antivirais/farmacologia , Proteínas do Capsídeo/genética , Vírus da Hepatite B/genética , Humanos , Montagem de Vírus , Replicação Viral
19.
Antiviral Res ; 188: 105033, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549572

RESUMO

Remdesivir (RDV) exhibits potent antiviral activity against SARS-CoV-2 and is currently the only drug approved for the treatment of COVID-19. However, little is currently known about the potential for pre-existing resistance to RDV and the possibility of SARS-CoV-2 genetic diversification that might impact RDV efficacy as the virus continue to spread globally. In this study, >90,000 SARS-CoV-2 sequences from globally circulating clinical isolates, including sequences from recently emerged United Kingdom and South Africa variants, and >300 from mink isolates were analyzed for genetic diversity in the RNA replication complex (nsp7, nsp8, nsp10, nsp12, nsp13, and nsp14) with a focus on the RNA-dependent RNA polymerase (nsp12), the molecular target of RDV. Overall, low genetic variation was observed with only 12 amino acid substitutions present in the entire RNA replication complex in ≥0.5% of analyzed sequences with the highest overall frequency (82.2%) observed for nsp12 P323L that consistently increased over time. Low sequence variation in the RNA replication complex was also observed among the mink isolates. Importantly, the coronavirus Nsp12 mutations previously selected in vitro in the presence of RDV were identified in only 2 isolates (0.002%) within all the analyzed sequences. In addition, among the sequence variants observed in ≥0.5% clinical isolates, including P323L, none were located near the established polymerase active site or sites critical for the RDV mechanism of inhibition. In summary, the low diversity and high genetic stability of the RNA replication complex observed over time and in the recently emerged SARS-CoV-2 variants suggests a minimal global risk of pre-existing SARS-CoV-2 resistance to RDV.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , COVID-19/virologia , Farmacorresistência Viral , Variação Genética , RNA Viral , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Replicação Viral/genética , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Substituição de Aminoácidos , Animais , COVID-19/epidemiologia , Evolução Molecular , Humanos , Vison , Modelos Moleculares , Conformação Proteica , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Análise de Sequência de DNA , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Sequenciamento Completo do Genoma , Tratamento Farmacológico da COVID-19
20.
J Viral Hepat ; 28(1): 30-39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32894807

RESUMO

Both the A194T and a quadruple mutation CYEI (S106C, H126Y, D134E and L269I) in hepatitis B virus (HBV) polymerase reverse transcriptase domain (pol/RT) are suggested to be associated with treatment failure with tenofovir disoproxil fumarate (TDF). To further evaluate this assertion, the prevalence of these mutations at baseline as well as their development and/or loss during TDF and tenofovir alafenamide (TAF) treatment was analysed in 3886 patients enrolled in Gilead HBV clinical studies. In total, six out of 3886 (0.2%) patients carried the rtA194T mutation, while only 1 patient carried a triple CYE and 2 patients carried a quadruple CYEI mutation at baseline. All the patients harbouring rtA194T or CYE/CYEI at baseline achieved viral suppression by week 96 after TDF or TAF treatment. No patients developed an rtA194T mutation or > 1 substitution of CYEI, and the number of patients losing any substitutions of CYEI (n = 17) was similar to the number who developed a single substitution of CYEI (n = 32) during treatment. Phenotypic evaluation of the site-directed mutant (SDM) panel containing these mutations with or without other resistance mutations did not demonstrate a significant shift in TFV and TAF potency in vitro. No evidence of rtA194T and CYEI conferring resistance to TDF or TAF was observed based on the treatment responses to TDF or TAF in patients with mutations at baseline, the lack of selection of mutations after starting TDF or TAF treatment and no change in susceptibility to TFV or TAF in vitro.


Assuntos
Farmacorresistência Viral , Vírus da Hepatite B , Alanina , Farmacorresistência Viral/genética , Vírus da Hepatite B/genética , Humanos , Mutação , Tenofovir/análogos & derivados , Tenofovir/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...